Resources
Modified bituminous binders allow asphalt technologists to design asphalt mixtures with superior performance. However, several recent studies highlighted that due to the complexity of these material, their characterisation can be challenging since common procedures used to characterise neat bitumen might not be adequate. For instance, during high temperature rotational viscosity testing of recycled tyre rubber modified binders (RTR-MB), a number of changes may occur to the sample leading to the here-defined sample stability which in turn provides misleading results. In this study the authors want to first provide a deeper understanding of this phenomenon by a numerical analysis using a bespoke Computational Fluid Dynamics (CFD) model to simulate the laboratory tests and use innovative visual aids to monitor the sample stability of heterogeneous bituminous binders during the rotational test. The numerical analysis was complemented by a laboratory campaign aiming at proving the occurring of sample stability during viscosity measurement of heterogeneous bituminous binders with a standard testing setup (SC-27). Furthermore, a dual helical ribbon (DHR) is here introduced as a solution to overcome the issue. Hence, laboratory tests were undertaken also with DHR and differences in viscosity measurements of neat bitumen, SBS-MB and RTR-MB were recorded. Results of this combined numerical and empirical approach proved that the standard setup for rotational viscosity measurements seems not be adequate for RTR-MB and depending on the level of modification and test temperatures, might not be best suited for SBS-MB either. The DHR seems to solve the issue and authors strongly recommend the adoption of this testing geometry to obtain more realistic high-temperature viscosity measurement of heterogeneous bituminous binders.
Multi-phasematerials are common in several fields of engineering and rheological measurements are intensively adopted for their development and quality control. Unfortunately, due to the complexity of these materials, accurate measurements can be challenging. This is the case of bitumen-rubber blends used in civil engineering as binders for several applications such as asphalt concrete for road pavements but recently also for roofing membranes. These materials can be considered as heterogeneous blends of fluid and particles with different densities. Due to this nature the two components tends to separate and this phenomenon can be enhanced with inappropriate design and mixing. This is the reason behind the need of efficient dispersion and distribution during their manufacturing and it also explains while real-time viscosity measurements could provide misleading results. To overcome this problem, in a previous research effort, a Dual Helical Impeller (DHI) for a Brookfield viscometer was specifically designed, calibrated and manufactured. The DHI showed to provide a more stable trend of measurements and these were identified as being ‘‘more realistic” when compared with those obtained with standard concentric cylinder testing geometries, over a wide range of viscosities. However, a fundamental understanding of the reasons behind this improvement is lacking and this paper aims at filling these gaps. Hence, in this study a tailored experimental programme resembling the bitumen-rubber system together with a bespoke Computational Fluid Dynamics (CFD) model are used to provide insights into DHI applicability to perform viscosity measurements with multiphase
fluids as well as to validate its empirical calibration procedure. A qualitative comparison between the laboratory results and CFD simulations proved encouraging and this was enhanced with quantitative estimations of the mixing efficiency of both systems. The results proved that CFD model is capable of simulating these systems and the obtained simulations gave insights into the flow fields created by the DHI. It is now clear that DHI uses its inner screw to create a vertical dragging of particles within a fluid of lower density, while the outer screw transports the suspended particles down. This induced flow helps keeping the test sample less heterogeneous and this in turns allows recording more stable viscosity measurements.
The ultimate performance of crumb rubber modified (CRM) binders is linked to the accurate control of the properties during manufacturing and hot storage. However, due to their complexity, asphalt technologists find the characterisation of these materials still challenging. In this study, the adoption of a Dual
Helical Ribbon (DHR), a novel mixing/measuring device for rotational viscometers, is proposed for the real-time monitoring of CRM binders during manufacturing and hot storage. According to the laboratory results, manufacturing periods of 45–60 min at 195, as well as storage temperatures not exceeding 150 C, are recommended for this type of modified binders.